Object-orientation for Behavior
Modeling and Composition

2017 Korea Conference on Software Engineering

Hiun Kim

hiun@divtag.sejong.edu

B.S. Student / Computer Science
Sejong University, Seoul, Korea

mailto:hiun@divtag.sejong.edu

Modern Software is Complex

- Examples
- Web Applications (high-level APIs; service-oriented architectures;)
- Mobile Applications (business logics, analytics)
- User Interfaces (rich/advanced Ul; single page applications)
- Robotics (high-level functionalities)

- Factors
- Modern software contains ‘many’ ‘high-level’ operation
- The operations are varies, share some traits and differ some traits
- Variability management is key issue on modern software engineering
- High modularity is essential to maintain sustainable software evolution

- Modularity property includes reusability, flexibility and comprehension

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 2 of 20

Issues on Modularity of Modern Software

- Feature : prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems (Kang et al.)

- Each ‘features’ of modern software
- has some variabilities to provides distinctive functionality
- shares some commonalities to meet quality which the domain constrains

- Examples
* robots : every move has backups when crash/collision
* Web service : every user operation should be authenticated and logged
- Many other software product lines problem tries to handle

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 3 of 20

Related Works

- Researches on localisation/modularisation of commonalities
- Metaprogramming / Metaobject protocol support for OOP

- Aspect-oriented Approaches (Kiczales at el. 97)
- Asymmetric Approach
- Aspectd : base program augmented with aspects (Kiczales at el. 01)

- Delta-oriented Programming : core module and set of delta module to
apply changes like adding/modifying and removes (Schaefer at el. 10)

- Symmetric Approach

- Hyper/J : Multi-dimensional seperation of concern and its flexible
concern composition tools (Ossher at el. 00)

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 4 of 20

The Essence of Object-orientation

- Made for Simulation - SIMULAG67 (Dahl at el. 67)

- Human to modeling the real world

- A perspective/framework of thinking, programming paradigm
- Inheritance/compose/refine to make the desired thing from abstract thing
- abstract thing - superclass / specific thing - subclass (and sub-subclass)
- The Thing, an object is consist of data and behavior

- OOP discovers new ways of analysing requirement and design software

- The success of OOP is inevitable by its idea, modeling the real world, since
most of our software is working for real world

- Other issues on OOP, traceability, performance and collaboration

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 5 of 20

Bringing The Idea of Object-orientation into Behavior

Inheritance/compose/refine to make specific thing from abstract thing

!

Inheritance/compose/refine to make specific behavior from abstract behavior

- The independence of behavior from object by supports its own hierarchical
relationship and its own system.

- We can achieve

- Reusability by localising commonalities to abstract behavior and
variabilities to specific behavior.

- Flexibility by composing/refine variability to specific by inheritance with
well-established OO conventions and techniques

- Comprehension by hiding the detail of behavior and enforcing proper level
of abstraction in given programming context

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 6 of 20

Self-composable Programming

- Introduces mental model of hierarchical relationship of behavior

Event Object-oriented | Behavior-oriented
Jane picks an apple Jane => Pick Pick => Jane
Jane sends an message Jane => Send Send => Jane

Abstract Object / Behavior [Person j [Send J

(localisng commonalities)

Create Instance through Inheritance T T

Specific Object / Behavior

(refining variabilities) Jane] [SendMessage

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 7 of 20

Self-composability

+ For behavior construction and refinement
- To support behavior

- modular by construction / flexible refinement
- Self-addition : composing behavior sequentially
- Self-update : refine specified portion of behavior

- Self-deletion : delete specified portion of behavior

- Self-manipulation : free-mode of manipulating portion of behavior

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 8 of 20

Multi-level Inheritance of Behavior

[send |

I

[SendMessageJ

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 9 of 20

Multi-level Inheritance of Behavior

- . , super-super behavior
- Abstract-Specific Relationship

- Hierarchy on behavior [Transmission J

- Just like class hierarchy in OO design
super behavior
- Applying variability [Send]
- inheritance of sub behavior from super
behavior T |
sub behavior
- apply refinement to sub behavior -
[SendMessageJ

sub sub behavior

[SendTextMessage] [SendVoiceMessagej

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 100of 20

Self-composable Domain Analysis

localise commonalities to super behavior (In case of web application)

(ReadPostsRecents)
C ReadPost X

C ReadPostsPopular)
(ReadDBQuery
(ReadMessagel.ists)
(ReadMessage X
(ReadMessages)
C DBQuery
C CreatePost)
(WritePost X
(UpdatePost)
(WriteDBQuery
(CreateMessage)
CWriteMessageX
C DeleteMessage)
Connection Operation-specific Object-specific Feature-specific
Management Processing Processing Processing

<Domain of Cross-cutting Concerns per Each Behavioral Level>

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

11 0of 20

Code-level Overview of Self-composable Programming

- Self-js : A JavaScript Implementation of Self-composable Programming

- Available at https://github.com/hiun/self-js (will release in stable)
- Method list for Self-composability

Method Name Description
Behavior#add Self-addition; Append given sub behavior
Behaviortsub#before Self-update; Insert given sub behavior before

specified sub behavior
Self-update; Insert given sub behavior after

Behavior#sub#after >~ _
specified sub behavior
Behavior#sub#update Self-update; Replace sub _behavior by given sub
behavior
Behavior#tsub#delete Self-delete; Delete specified sub behavior
Behavior#sub#map Self-delete; Manipulate specified sub behavior in

the context of given function

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 12 of 20

https://github.com/hiun/self-js

Behavior Construction

- Database-backed, web API that supports both creation of post and
messages with application-wide and object-specific constrain

- 1st step : behavior construction with application-wide constraint
- authentication check / data validation / monitoring
- Internals. Create new behavior array and push each sub behavior

DBQuery behavior var Behavior = require('self');
rf N
auth :
L y var DBQuery = new Behavior();
f _ B
| valdate DBQuery.add(auth);
p N DBQuery.add(validate);
monit DBQuery.add(monit);
- ? . ’

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 13 of 20

Behavior Inheritance

- 2nd step : Inherit constructed super behavior and refine to sub-sub behavior
- Internals. create new behavior instance, inherit sub behavior and method list

DBQuery
4)
()

auth
g _J
Z validate :
()

monit
LS ~ var ReadDBQuery = new DBQuery();
//////"\\\\\\ var WriteDBQuery = new DBQuery();

ReadDBQuery WriteDBQuery var ReadMessage = new ReadDBQuery();

var WriteMessage = new WriteDBQuery();
{[DBQuery]J [(DBQuery)J

| T

ReadMessage WriteMessage

[(ReadDBQuery]J [(WriteDBQuery)J

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 14 of 20

Behavior Refinement

- 3rd step : Refine inherited sub-behavior to create the desired module

- Internals. Sub behavior placed element in array, manipulating array to refine

WriteDBQuery
4)
ReadDBQuery auth)
r R ~
(A
[auth J | SQLInjChk)
: validate j
~ -) e)
monit monit
_ _J _ v,
4) 4
L cachelLookup) writeBack)
_ J \\))
ReadMessage WriteMessage
(f N\ (f \\
 ReadDBQuery WriteDBQuery |
() ()
readMsgExec writeMsgExec
_ J kk)J

J

ReadDBQuery.add(cacheLookup);
ReadDBQuery.delete(validate);
WriteDBQuery.add(writeBack);
WriteDBQuery.validate.before(SQLInjChk);

ReadMessage.add(readMsgExec);
WriteMessage.add(writeMsgExec);

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

150f 20

Behavior Execution

- 4th step : Executed refined behavior with initial arguments

- Internals. Sequentially invoke sub behavior with initial argument and returning
value of succeeding sub behavior

ReadMessage

-

(auth]

monit

()

kcacheLookup)

()

L readMsgExec)

~

WriteMessage

r

e)

auth

-
J L

SQLInjChk

validate

monit

J _J _J U

writeBack

.

-

4 A
| writeMsgExec |

CreateMessage.exec([Arguments], Handler);

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

160f 20

Preliminary Empirical Evaluation Result

- Performs evaluation based on high-level implementation of web service
compare to Aspect-oriented Programming(AOP) based implementation

- Implementing web service for database operation around User and Post
object with for level of inheritance.

- The efficiency of SLOC come from explicit manipulation for only changed.

Feature Name (Method) Measurements AOP Self

User.getName

Number of Implemented 3

User.getProfile Feature

User.getPosts

User.getOnline SLOC for Integration (a) 26 14
Post.getRecentSummary .

SLOC of cross-cutting 18 6
Post.getRecentsWithoutimage concerns (b)

POSt.getPOpUIarsummary Avg SLOC per Sing|e

2.25 0.75

Post.getPopularWithoutimage cross-cutting concern (b/8)

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 17 of 20

Preliminary Predictive Evaluation Result

- Using regression analysis to predict SLOC growth per advancement of feature

- As a result, we could confirm efficiency of Self-composable Programming
with manipulating only part that has updated

<Self-js Implementation>

Lev. of Num. of | Num. of | SLOC for Total
Inheritance | super sub Refinement | SLOC
1st 1 2 5 10
2nd 2 5 5 50
3rd 5 10 5 250
4th (projected) 1,250
5th (projected) 6,249
<AspectJ-like Implementation>
1st 1 2 10 20
2nd 2 5 15 150
3rd 5 10 20 1,000
4th (projected) 7,211
5th (projected) 50,988

2,500

2,000

1,500

1,000

SLOC of Implementation

500

— AOP SLOC (projected)
- Self SLOC "
y = 2.8845e1.956x,
(projected)
y= Del.6094x

1 2 3
Level of Feature Advancement

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017

180f 20

Limitations and Future Research Directions

- Scattering and tangling of eress-eutting-coneerns refinements

- Same problems of object-oriented design has
- Robust architectural pattern for representing system behavior directly
- e.g. DCI architecture for object-oriented collaboration (Reenskaug at el. "09)

- Explicit refinment is like metaprogramming may consider unsafe
- High-level, implicit refinement by using traits/mixin

- Domain-specific optimisation by custom module structure/method name

- More empirical studies for proofing efficiency and enhancing theory

- Dedicated language for modeling real-world behavior

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 19 of 20

Self-composable Programming

- Technigque for code-level modeling real-world behavior
- Modularisation by abstract-specific behavior hierarchy
- Flexible reusing through OO-fashioned composition and inheritance
-+ Opens possibility of advanced refinement by well-established OO theory

- Benefits for highly complex modern software
- Support code reuse through managed localisation
- Flexible software composition
- Improve productivity by raising level of abstraction

- | am looking for Ph.D. position to continue research on programming
languages and software engineering please letting me know if you are
interested!

Hiun Kim. Object-orientation for Behavior Modeling and Composition. KCSE 2017 200f 20

